The objective of this work was to determine the effect of milk bactofugation on the counts and microbial diversity of mesophilic (MT), psychrotrophic (PT), and thermophilic (TT) thermoduric bacteria and its potential as a technological method to remove spoilage microorganisms resistant to pasteurization. Different batches of raw milk from 69 dairy farms divided into sets in 3 bulk tanks (A, B, C) were evaluated at different times during the technological process. As the raw milk was preheated (~55°C) immediately before bactofugation (10,000 × g), the effect of bactofugation was estimated by comparing the counts in raw, preheated, and bactofuged milk. This centrifugation was sufficient to reduce the isolation of 88% of the MT in preheated milk. For PT, it was possible to verify a reduction of 72.5% in batch C. The TT were not recovered at higher detection limits (<5 cfu/mL). For diversity, 310 isolates were identified using a molecular approach; 15 species of contaminating thermoduric bacteria were identified from raw and preheated milk, and only 6 species were recovered in bactofuged milk. Only MT were recovered from the bactofuged milk, mainly the species Lysinibacillus fusiformis (61.7%) and Bacillus licheniformis (12.3%). Both species are known to be endosporeforming psychrotrophs and have proteolytic or lipolytic activity. The bactofugation of raw milk reduced the number of isolates of B. licheniformis, Bacillus toyonensis, Micrococcus aloeverae, and Aestuariimicrobium kwangyangense by 33, 43, 86, and 92%, respectively, and reduced the isolates of Macrococcus caseolyticus, Lysinibacillus varians, Carnobacterium divergens, Microbacterium hominis, Kocuria indica, Micrococcus yunnanensis, Gordonia paraffinivorans, Bacillus invictae, and Kocuria kristinae to undetectable levels. The results of this study indicate that bactofugation can be applied by the dairy industry to reduce pasteurizationresistant microorganisms in combination with prophylactic measures to prevent the contamination of raw milk by spores and vegetative forms of bacteria.