Cognitive radio (CR) acts as a significant player in enhancing the spectral efficiency (SE) of wireless telecommunications; simultaneously, the intelligent reflecting surface (IRS) technique is a valid technique for increasing the confidentiality properties of wireless telecommunications systems through the modulation of the amplitude and phase shift of the channel. Therefore, we take into consideration an IRS-assisted multiple-input single-output (MISO) CR system to raise the confidentiality rate, which is composed of a primary network with a primary receiver (PR) and an eavesdropping link, as well as a secondary network with a secondary receiver (SR) and SR transmitter (SR-TX). In particular, we minimize the SR’s transmit power under the interference temperature (IT) and confidentiality capacity constraints via the joint optimization of the beamforming vector and artificial noise (AN) constraint matrix at SR-TX together with the phase shift matrix of IRS. Numerical outcomes indicate that various transmit antenna values and the IRS element numbers at SR-TX can greatly reduce transmit power while assuring secure communication.