Short-Term Drought Forecast across Two Different Climates Using Machine Learning Models
Reza Piraei,
Majid Niazkar,
Fabiola Gangi
et al.
Abstract:This paper presents a comparative analysis of machine learning (ML) models for predicting drought conditions using the Standardized Precipitation Index (SPI) for two distinct stations, one in Shiraz, Iran and one in Tridolino, Italy. Four ML models, including Artificial Neural Network (ANN), Multiple Linear Regression, K-Nearest Neighbors, and XGBoost Regressor, were employed to forecast multi-scale SPI values (for 6-, 9-, 12-, and 24-month) considering various lag times. Results indicated that the ML model wi… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.