Time-series forecasting is crucial in the efficient operation and decision-making processes of various industrial systems. Accurately predicting future trends is essential for optimizing resources, production scheduling, and overall system performance. This comprehensive review examines time-series forecasting models and their applications across diverse industries. We discuss the fundamental principles, strengths, and weaknesses of traditional statistical methods such as Autoregressive Integrated Moving Average (ARIMA) and Exponential Smoothing (ES), which are widely used due to their simplicity and interpretability. However, these models often struggle with the complex, non-linear, and high-dimensional data commonly found in industrial systems. To address these challenges, we explore Machine Learning techniques, including Support Vector Machine (SVM) and Artificial Neural Network (ANN). These models offer more flexibility and adaptability, often outperforming traditional statistical methods. Furthermore, we investigate the potential of hybrid models, which combine the strengths of different methods to achieve improved prediction performance. These hybrid models result in more accurate and robust forecasts. Finally, we discuss the potential of newly developed generative models such as Generative Adversarial Network (GAN) for time-series forecasting. This review emphasizes the importance of carefully selecting the appropriate model based on specific industry requirements, data characteristics, and forecasting objectives.