2022
DOI: 10.36227/techrxiv.16807213
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Short term load forecasting using LSTM ensembled network on utility scale load demand

Abstract: This work entails producing load forecasting through lstm and lstm ensembled networks and put up a comparative picture between the two. Our work establishes that lstm ensemble learning can produce a better prediction compared to single lstm networks. We tried to quantify the improvement and assess the economic impact that it can have on the utility companies.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 61 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?