1992
DOI: 10.1109/59.141695
|View full text |Cite
|
Sign up to set email alerts
|

Short-term load forecasting using an artificial neural network

Abstract: -Artificial Neural Network (ANN) Method is applied to forecast the short-term load for a large power system. The load has two distinct patterns: weekday and weekend-day patterns. The weekend-day pattern include Saturday, Sunday, and Monday loads. A nonlinear load model is proposed and several structures of ANN for short-term load forecasting are tested. Inputs to the ANN are past loads and the output of the ANN is the load forecast for a given day. The network with one or two hidden layers are tested with vari… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
168
0
10

Year Published

1996
1996
2024
2024

Publication Types

Select...
9
1

Relationship

0
10

Authors

Journals

citations
Cited by 490 publications
(178 citation statements)
references
References 16 publications
0
168
0
10
Order By: Relevance
“…Dentro de este contexto, en las dos últimas décadas se han introducido nuevos modelos de previsión que manejan de manera eficiente la aleatoriedad de los consumos y presentan una fácil adaptabilidad a nuevos datos, sin la necesidad de incurrir en laboriosas formulaciones matemáticas. Entre estos modelos se incluyen las técnicas de las Redes Neuronales Artificiales (RNA) (Lee et al, 1992;Alireza et al, 1995;Khotanzad et al, 1995;Bakirtzis et al, 1996;Piras et al, 1996;Sforma et al, 1996;Caciotta et al, 1997), los Sistemas Fuzzy (SF), (Miranda & Saraiva, 1992;Matos et al, 2008) y los sistemas Neuro-Fuzzy (NF) (Kim, 1995;Lotfalian et al, 1998;Kim et al, 2000;Alireza et al, 2002;Ling et al, 2003;Liao et al, 2006).…”
Section: Revisión Estado Del Arteunclassified
“…Dentro de este contexto, en las dos últimas décadas se han introducido nuevos modelos de previsión que manejan de manera eficiente la aleatoriedad de los consumos y presentan una fácil adaptabilidad a nuevos datos, sin la necesidad de incurrir en laboriosas formulaciones matemáticas. Entre estos modelos se incluyen las técnicas de las Redes Neuronales Artificiales (RNA) (Lee et al, 1992;Alireza et al, 1995;Khotanzad et al, 1995;Bakirtzis et al, 1996;Piras et al, 1996;Sforma et al, 1996;Caciotta et al, 1997), los Sistemas Fuzzy (SF), (Miranda & Saraiva, 1992;Matos et al, 2008) y los sistemas Neuro-Fuzzy (NF) (Kim, 1995;Lotfalian et al, 1998;Kim et al, 2000;Alireza et al, 2002;Ling et al, 2003;Liao et al, 2006).…”
Section: Revisión Estado Del Arteunclassified
“…In recent years, much research has been conducted on the application of artificial intelligence techniques to load forecasting problems [5][6][7][8][9][10][11][12][13][14][15][16][17][18][19][20][21][22][23][24]. However, the models that have received the most extensive attention are undoubtedly the ANNs, cited among the most powerful computational tools ever developed.…”
Section: Artificial Intelligence Based Methodsmentioning
confidence: 99%
“…Most of the suggested models use MLP networks see for example [21,40,25,17]. The attraction of MLP has been explained by the ability of the network to learn complex relationships between input and output patterns, which y 1 1 y t-m y t-2 y t-1 would be difficult to model with conventional algorithmic methods.…”
Section: Artificial Neural Networkmentioning
confidence: 99%