2014 IEEE Industry Application Society Annual Meeting 2014
DOI: 10.1109/ias.2014.6978380
|View full text |Cite
|
Sign up to set email alerts
|

Short-term load forecasting using regression based moving windows with adjustable window-sizes

Abstract: This paper presents a regression based moving window model for solving the short-term electricity forecasting problem. Moving window approach is employed to trace the demand pattern based on the past history of load and weather data. Regression equation is then formed and least square method is used to determine the parameters of the model. In this paper, a new concept associated with cooling and heating degree is used to establish the relationship between electricity demand and temperature, which is one of th… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
13
0
2

Year Published

2015
2015
2021
2021

Publication Types

Select...
6
1
1

Relationship

0
8

Authors

Journals

citations
Cited by 20 publications
(15 citation statements)
references
References 23 publications
0
13
0
2
Order By: Relevance
“…Bu modellerin en önemli dezavantajı makul düzeyde başarım elde edebilmek için oldukça karmaşık modelleme yöntemleri ve hesaplama gücü gerektirmesidir [2].…”
Section: öNceki̇ çAlişmalarunclassified
See 1 more Smart Citation
“…Bu modellerin en önemli dezavantajı makul düzeyde başarım elde edebilmek için oldukça karmaşık modelleme yöntemleri ve hesaplama gücü gerektirmesidir [2].…”
Section: öNceki̇ çAlişmalarunclassified
“…Özellikle elektrik piyasalarının serbestleşmesindeki ivmeye baglı olarak, kısa dönem yük tahminine yönelik çeşitli modeller geliştirilmiştir. Bu modeller arasında; çoklu dogrusal regresyon [2], Box-Jenkins yöntemi ve türevleri olan diger özbaglanımlı modeller [3], yapay sinir agları (YSA) [4], bulanık mantık sistemleri [5], Kalman filtreleme modelleri [6] ve hibrid modeller [7], [8] sayılabilir.…”
Section: Introductionunclassified
“…With the deregulation of electricity markets, a variety of STLF models are developed. These models include multi linear regression [ 6 ], Box-–Jenkins method and other derived autoregressive models [ 7 ], artificial neural networks (ANNs) [ 8 ], fuzzy logic systems [ 9 ], Kalman Filter models [ 10 ] and hybrid models [ 11 , 12 ]. Relationship between external factors and electrical load is not only quite complex but also nonlinear.…”
Section: Introductionmentioning
confidence: 99%
“…The first group consists of regression [ 15 17 ] and time series methods [ 7 , 18 23 ], where the performances are given in Mean Absolute Percentage Error (MAPE) and vary between 1.40% and 7.0%. The second group of studies are either ANN based [ 8 , 24 – 28 ] or have some extensions and modifications to ANN, which are referred as hybrid solutions [ 6 , 12 , 29 36 ]. All these modifications tend to increase forecast performance, and this group of studies report MAPE values between 0.98% and 14.0%.…”
Section: Introductionmentioning
confidence: 99%
“…Machine learning approaches include neural networks (NN) [1,3], support vector machine (SVM) [4,6]. Time series methods [7,8] include correlation analysis method [9,10], ARIMA models [11,13] and exponential smoothing [14,15] etc..…”
Section: Introductionmentioning
confidence: 99%