Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Contrast processing is suggested to interact with eye growth and myopia development. A novel contrast-reducing myopia control lens design decreases image contrast and was shown to slow myopia progression. Limited insights exist regarding neural visual processing following adaptation to image contrast reduction. This study investigated foveal neural contrast sensitivity in 29 young adults following a 30-minute adaptation to scattering using a Bangerter occlusion foil 0.8, +0.5-diopter defocus, and a clear lens control condition. Neural contrast sensitivity at its peak sensitivity of 6 cycles per degree was assessed before and after adaptation to the lens conditions, employing a unique interferometric system. Pre-adaptation measurements were averaged from six replicates and post-adaptation measurements by the first and last three of six replicates. The change in neural contrast sensitivity was largest for scattering across the first and last three post-adaptation measurements (+0.05 ± 0.01 logCS and +0.04 ± 0.01 logCS, respectively) compared with control and defocus (all +0.03 ± 0.01 logCS). For scattering, the observed increase of neural contrast sensitivity within the first three measurements differed significantly from the pre-adaptation baseline ( p = 0.04) and was significantly higher compared with the control condition ( p = 0.04). The sensitivity increases in the control and defocus conditions were not significant (all p > 0.05). As the adaptation effect diminished, no significant differences were found from baseline or between the conditions in the last three measurements (all p > 0.05). When post-adaptation neural contrast sensitivities were clustered into 25-second sequences, a significant effect was observed between the conditions, with only a significant relevant effect between control and scattering at 25 seconds ( p = 0.04) and no further significant effects (all p > 0.05). The alteration in neural contrast sensitivity at peak sensitivity was most pronounced following adaptation to the scattering condition compared with defocus and control, suggesting that induced scattering might be considered for myopia control.
Contrast processing is suggested to interact with eye growth and myopia development. A novel contrast-reducing myopia control lens design decreases image contrast and was shown to slow myopia progression. Limited insights exist regarding neural visual processing following adaptation to image contrast reduction. This study investigated foveal neural contrast sensitivity in 29 young adults following a 30-minute adaptation to scattering using a Bangerter occlusion foil 0.8, +0.5-diopter defocus, and a clear lens control condition. Neural contrast sensitivity at its peak sensitivity of 6 cycles per degree was assessed before and after adaptation to the lens conditions, employing a unique interferometric system. Pre-adaptation measurements were averaged from six replicates and post-adaptation measurements by the first and last three of six replicates. The change in neural contrast sensitivity was largest for scattering across the first and last three post-adaptation measurements (+0.05 ± 0.01 logCS and +0.04 ± 0.01 logCS, respectively) compared with control and defocus (all +0.03 ± 0.01 logCS). For scattering, the observed increase of neural contrast sensitivity within the first three measurements differed significantly from the pre-adaptation baseline ( p = 0.04) and was significantly higher compared with the control condition ( p = 0.04). The sensitivity increases in the control and defocus conditions were not significant (all p > 0.05). As the adaptation effect diminished, no significant differences were found from baseline or between the conditions in the last three measurements (all p > 0.05). When post-adaptation neural contrast sensitivities were clustered into 25-second sequences, a significant effect was observed between the conditions, with only a significant relevant effect between control and scattering at 25 seconds ( p = 0.04) and no further significant effects (all p > 0.05). The alteration in neural contrast sensitivity at peak sensitivity was most pronounced following adaptation to the scattering condition compared with defocus and control, suggesting that induced scattering might be considered for myopia control.
Purpose The mechanisms underlying a myopia control strategy using scattering lenses are unclear. Therefore, this study investigates the short-term effects of scatter lenses on central and peripheral choroidal thickness and axial length, which serve as a biomarker in myopia progression research. Methods In total, 23 participants underwent a 60-minute lens wear phase each to five lens conditions: medium peripheral scattering, high peripheral scattering, medium full-field scattering, high full-field scattering and control (clear lens). Central and peripheral choroidal thickness, foveal axial length, and central visual acuity were measured before and after each lens wear condition. Results Peripheral choroidal thickening was found after the lens wear phase of the medium peripheral scattering condition (+3.91 ± 5.37 µm, P = 0 . 04), revealing a significant difference to the control lens condition ( P = 0.004), most pronounced in the superior peripheral retina (+1.95 ± 10.74 µm, P = 0.02). In the central retina, significant choroidal thickening was only found in the nasal part after exposure to medium full-field scattering (+3.91 ± 11.72 µm) compared to the control condition ( P = 0.001). High peripheral and full-field scattering conditions did not significantly affect central or peripheral choroidal thickness. Visual acuity was significantly reduced in the full-field scattering conditions compared to control and peripheral scattering lenses, with no improvement after 60-minute lens wear. Axial length did not differ significantly after 60-minute exposure to any scattering lens condition or when compared to the control lens. Conclusions The results indicate a local retinal contrast detection mechanism signals the choroid to thicken peripherally after adaptation to medium peripheral scattering but not high peripheral scattering or full-field scattering at all, while central thickening was only significant nasally after exposure to medium full-field scattering. This emphasizes the importance of the peripheral retina and the level of contrast reduction in the context of myopia research. Translational Relevance This finding gives insight into the mechanism behind the myopia control strategy inducing peripheral scattering.
The balance of ON/OFF pathway activation in the retina plays a role in emmetropization. A new myopia control lens design uses contrast reduction to down-regulate a hypothesized enhanced ON contrast sensitivity in myopes. The study thus examined ON/OFF receptive field processing in myopes and non-myopes and the impact of contrast reduction. A psychophysical approach was used to measure the combined retinal-cortical output in the form of low-level ON and OFF contrast sensitivity with and without contrast reduction in 22 participants. ON responses were lower than OFF responses (ON 1.25 ± 0.03 vs. OFF 1.39 ± 0.03 log(CS); p < 0.0001) and myopes showed generally reduced sensitivities (myopes 1.25 ± 0.05 vs. non-myopes 1.39 ± 0.05 log(CS); p = 0.05). These findings remained unaffected by contrast reduction (p > 0.05). The study suggests that perceptual differences in ON and OFF signal processing between myopes and non-myopes exist but cannot explain how contrast reduction can inhibit myopia development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.