2023
DOI: 10.3390/en16104130
|View full text |Cite
|
Sign up to set email alerts
|

Short-Term Power Load Forecasting Based on Feature Filtering and Error Compensation under Imbalanced Samples

Abstract: There are many influencing factors present in different situations of power load. There is also a strong imbalance in the number of load samples. In addition to examining the problem of low training efficiency of existing algorithms, this paper proposes a short-term power load prediction method based on feature selection and error compensation under imbalanced samples. After clustering the load data, we expand some sample data to balance the sample categories and input the load data and filtered feature sequen… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
references
References 36 publications
0
0
0
Order By: Relevance