This work focuses on the prediction of hourly levels up to 8 hours ahead for five pollutants (SO 2 , CO, NO 2 , NO and O 3 ) and six locations in the area of Bilbao (Spain). To that end, 216 models based on neural networks (NN) have been built. Spatial variability for the five pollutants has been assessed using Principal Components Analysis and different behaviour has been detected for the nonreactive pollutant (SO 2 ) and the rest (CO, NO 2 , NO and O 3 ). This can be explained by the very local effects involved in the photochemical reactions. The inputs used to feed the NN models intended to predict forthcoming levels of these five pollutants, include a baseline based on autocorrelation plus a linear or nonlinear combination of different meteorological and traffic variables. The nature of these combinations is different depending on the sensor thus showing the importance of the spatial variability to build the models. The number of hourly cases, due to gaps in data predictions, can have a possible range from 11% to 38% depending on the sensor. Depending on the pollutant, location and number of hours ahead the prediction is made, different types of models have been selected. The use of these models based on NNs can provide Bilbao's air pollution network originally designed for diagnosis purposes, with short-term, real time forecasting capabilities. The performance of these models at the different sensors in the area range from a maximum value of R 2 =0.88 for the prediction of NO 2 1 hour ahead, to a minimum value of R 2 =0.15 for the prediction of ozone 8 hours ahead. These boundaries and the limitation in which the number of cases that predictions are possible represent the maximum forecasting capability that Bilbao's network can provide in real-life operating conditions.