Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Precision water and fertilizer application technologies have emerged as crucial innovations in sustainable agriculture, addressing the pressing need to enhance crop yield and quality while optimizing resource use and minimizing environmental impacts. This review systematically explores the latest advancements in precision water and fertilizer application technologies. It examines the integration of advanced sensors, remote sensing, and machine learning algorithms in precision agriculture, assessing their roles in optimizing irrigation and nutrient management. The study evaluates various precision techniques, including micro-irrigation systems, variable rate technology (VRT), and predictive modeling, along with their implementation in diverse agricultural settings. Furthermore, the review addresses the challenges posed by soil environmental heterogeneity and emphasizes the necessity for a scientific index system to guide precise applications. Advanced irrigation methods, such as subsurface drip irrigation and micro-sprinkling, improve water-use efficiency and reduce salinity levels, while precision fertilization techniques optimize nutrient uptake and minimize leaching. The integration of machine learning and remote sensing facilitates real-time monitoring and adaptive management, resulting in increased resource use efficiency and reduced environmental pollution. However, the effectiveness of these technologies is contingent upon addressing soil heterogeneity and developing standardized application indices. This review highlights the novel combination of advanced sensing technologies and data analytics in precision agriculture, enabling targeted interventions tailored to specific field conditions. It underscores the importance of integrating soil microbial community dynamics and biochemical indicators with precision management practices to enhance soil fertility and crop performance. Furthermore, the development of predictive models and time series analysis tools represents a significant advancement in anticipating and responding to changing environmental conditions. Precision water and fertilizer application technologies offer substantial benefits for sustainable agricultural practices by improving crop yields, enhancing resource efficiency, and mitigating environmental impacts. The strategic integration of these technologies with tailored agricultural practices and robust monitoring systems is essential for optimizing nutrient cycling and maintaining soil health. Addressing existing challenges through interdisciplinary research and collaborative efforts will further advance the implementation of precision agriculture, contributing to long-term soil sustainability and global food security.
Precision water and fertilizer application technologies have emerged as crucial innovations in sustainable agriculture, addressing the pressing need to enhance crop yield and quality while optimizing resource use and minimizing environmental impacts. This review systematically explores the latest advancements in precision water and fertilizer application technologies. It examines the integration of advanced sensors, remote sensing, and machine learning algorithms in precision agriculture, assessing their roles in optimizing irrigation and nutrient management. The study evaluates various precision techniques, including micro-irrigation systems, variable rate technology (VRT), and predictive modeling, along with their implementation in diverse agricultural settings. Furthermore, the review addresses the challenges posed by soil environmental heterogeneity and emphasizes the necessity for a scientific index system to guide precise applications. Advanced irrigation methods, such as subsurface drip irrigation and micro-sprinkling, improve water-use efficiency and reduce salinity levels, while precision fertilization techniques optimize nutrient uptake and minimize leaching. The integration of machine learning and remote sensing facilitates real-time monitoring and adaptive management, resulting in increased resource use efficiency and reduced environmental pollution. However, the effectiveness of these technologies is contingent upon addressing soil heterogeneity and developing standardized application indices. This review highlights the novel combination of advanced sensing technologies and data analytics in precision agriculture, enabling targeted interventions tailored to specific field conditions. It underscores the importance of integrating soil microbial community dynamics and biochemical indicators with precision management practices to enhance soil fertility and crop performance. Furthermore, the development of predictive models and time series analysis tools represents a significant advancement in anticipating and responding to changing environmental conditions. Precision water and fertilizer application technologies offer substantial benefits for sustainable agricultural practices by improving crop yields, enhancing resource efficiency, and mitigating environmental impacts. The strategic integration of these technologies with tailored agricultural practices and robust monitoring systems is essential for optimizing nutrient cycling and maintaining soil health. Addressing existing challenges through interdisciplinary research and collaborative efforts will further advance the implementation of precision agriculture, contributing to long-term soil sustainability and global food security.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.