Short-term traffic volume forecasting is one of the most essential elements in Intelligent Transportation System (ITS) by providing prediction of traffic condition for traffic management and control applications. Among previous substantial forecasting approaches, K nearest neighbor (KNN) is a nonparametric and data-driven method popular for conciseness, interpretability, and real-time performance. However, in previous related researches, the limitations of Euclidean distance and forecasting with asymmetric loss have rarely been focused on. This research aims to fill up these gaps. This paper reconstructs Euclidean distance to overcome its limitation and proposes a KNN forecasting algorithm with asymmetric loss. Correspondingly, an asymmetric loss index, Imbalanced Mean Squared Error (IMSE), has also been proposed to test the effectiveness of newly designed algorithm. Moreover, the effect of Loess technique and suitable parameter value of dynamic KNN method have also been tested. In contrast to the traditional KNN algorithm, the proposed algorithm reduces the IMSE index by more than 10%, which shows its effectiveness when the cost of forecasting residual direction is notably different. This research expands the applicability of KNN method in short-term traffic volume forecasting and provides an available approach to forecast with asymmetric loss.