2024
DOI: 10.3390/su16145960
|View full text |Cite
|
Sign up to set email alerts
|

Short-Term Wind Power Prediction Based on a Modified Stacking Ensemble Learning Algorithm

Yankun Yang,
Yuling Li,
Lin Cheng
et al.

Abstract: A high proportion of new energy has become a prominent feature of modern power systems. Due to the intermittency, volatility, and strong randomness in wind power generation, an accurate and reliable method for the prediction of wind power is required. This paper proposes a modified stacking ensemble learning method for short-term wind power predictions to reduce error and improve the generalization performance of traditional single networks in tackling the randomness of wind power. Firstly, the base learners i… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 24 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?