2010
DOI: 10.1103/physreve.81.011130
|View full text |Cite
|
Sign up to set email alerts
|

Short-time dynamics and critical behavior of the three-dimensional site-diluted Ising model

Abstract: Monte Carlo simulations of the short-time dynamic behavior are reported for three-dimensional weakly site-diluted Ising model with spin concentrations p=0.95 and 0.8 at criticality. In contrast to studies of the critical behavior of the pure systems by the short-time dynamics method, our investigations of site-diluted Ising model have revealed three stages of the dynamic evolution characterizing a crossover phenomenon from the critical behavior typical for the pure systems to behavior determined by the influen… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

8
19
0
7

Year Published

2010
2010
2020
2020

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 51 publications
(35 citation statements)
references
References 63 publications
8
19
0
7
Order By: Relevance
“…So far, the static critical exponents obtained from RG analysis, ͓7͔ Monte Carlo ͑MC͒ simulations ͓10,11,16,18,19͔, and experiments ͓6͔ agree in general quite well. However, ␥ = 1.306 from a nonperturbative approach ͓20͔ and ␥ = 1.305͑5͒ from a high-temperature series expansion ͓8͔ are slightly smaller than ␥ = 1.400͑30͒ ͓6͔, ␥ = 1.330͑17͒ ͓7͔, ␥ = 1.342͑10͒ ͓10͔, ␥ = 1.341͑4͒ ͓16͔, ␥ = 1.342͑7͒ ͓18͔, and also ␥ = 1.34͑1͒ of the bond-diluted Ising model ͓11͔.…”
Section: Introductionsupporting
confidence: 56%
“…So far, the static critical exponents obtained from RG analysis, ͓7͔ Monte Carlo ͑MC͒ simulations ͓10,11,16,18,19͔, and experiments ͓6͔ agree in general quite well. However, ␥ = 1.306 from a nonperturbative approach ͓20͔ and ␥ = 1.305͑5͒ from a high-temperature series expansion ͓8͔ are slightly smaller than ␥ = 1.400͑30͒ ͓6͔, ␥ = 1.330͑17͒ ͓7͔, ␥ = 1.342͑10͒ ͓10͔, ␥ = 1.341͑4͒ ͓16͔, ␥ = 1.342͑7͒ ͓18͔, and also ␥ = 1.34͑1͒ of the bond-diluted Ising model ͓11͔.…”
Section: Introductionsupporting
confidence: 56%
“…A similar calculation performed in the three-loop approximation for diluted Ising system [26] with the use of different methods of summation gave the value z = 2.1792 (13). The comparison of these FTM results with our present MC results and results in [18,24] shows that they are in good agreement for weakly diluted systems with p = 0.95 and 0.8 and with experimental value of z = 2.18(10) obtained in [27] under investigations of the dynamic critical behavior of weakly diluted Ising-like magnet F e p Zn 1−p F 2 with p = 0.9. The simulation results give a much higher values of the dynamic exponent z for spin concentrations p = 0.6 and 0.5.…”
Section: Analysis Of Results and Conclusionsupporting
confidence: 72%
“…However, it remains unclear whether the asymptotic values of critical exponents are independent of the rate of dilution of the system, how the crossover effects change these values, and whether two or more regimes of the critical behavior exist for weakly and strongly disordered systems. These questions are the subjects of heated discussions [2,15] and extensive Monte Carlo simulations for site-diluted [16][17][18] and bond-diluted [19,20] three-dimensional Ising models.…”
Section: Introductionmentioning
confidence: 99%
“…Ренормгрупповые [15,16], численные [17][18][19][20] и экспе-риментальные [21] методы исследования критической динамики структурно неупорядоченных систем позво-лили к настоящему времени однозначно установить, что присутствие в системах как некоррелированных дефектов структуры, так и дефектов с эффектами даль-нодействующей корреляции приводит к новым типам критического поведения и заметному усилению эффек-тов критического замедления по сравнению с " чистыми" системами. В связи с этим особенности неравновесно-го поведения, такие как эффекты старения, несомнен-но должны найти более яркое проявление в струк-турно неупорядоченных системах с новыми универ-сальными значениями флуктуационно-диссипативного отношения.…”
Section: [ S(x T)s(x T W ) − S(x T) S(x T W ) ] unclassified
“…Когда выполняется следующее их соответ-ствие t w < t ≪ t m , реализуемое для случая эволюции из высокотемпературного начального состояния с m 0 = 0, зависимости (18) для C(t, t w , t m ) и χ(t, t w , t m ) переходят в соотношения, соответствующие этому случаю [6,24]. Случай эволюции из высокотемпературного начального состояния с m 0 = 0 был детально исследован нами мето-дами Монте-Карло для чистой и структурной неупорядо-ченной трехмерной модели Изинга в работах [23,24,32].…”
Section: C(t T W T M ) =unclassified