Based on shortcuts to adiabaticity and quantum Zeno dynamics, we present a protocol to implement quantum state transfer (QST) in a quantum spin-1/2 chain. In the protocol, the complex Hamiltonian of an N -site system is simplified, and a simple effective Hamiltonian is present. It is shown that only the control of the coupling strengths between the boundary spins and the bulk spins are required for QST. Numerical simulations demonstrate that the protocol possesses high efficiency and is robust against the decay and the fluctuations of the control fields. The protocol might provide an alternative choice for transferring quantum states via spin chain systems.