Diabetic foot ulcers (DFU) are a leading cause of the global disease burden. Most DFUs are caused, and prolonged, by high plantar tissue stress under the insensate foot of a person with peripheral neuropathy. Multiple different offloading treatments have been used to try to reduce high plantar tissue stress and heal DFUs, including bedrest, casting, offloading devices, footwear, and surgical procedures. The best offloading treatments are those that balance the benefits of maximizing reductions in high plantar tissue stress, whilst reducing the risks of poor satisfaction, high costs and potential adverse events outcomes. This review aimed to summarize the best available evidence on the effects of offloading treatments to heal people with DFUs, plus review their use in clinical practice, the common barriers and solutions to using these treatments, and discuss promising emerging solutions that may improve offloading treatments in future. Findings demonstrate that knee-high offloading devices, non-removable or removable knee-high devices worn for all weight-bearing activities, are the gold standard offloading treatments to heal most patients with DFU, as they are much more effective, and typically safer, quicker, and cheaper to use compared with other offloading treatments. The effectiveness of offloading treatments also seems to increase when increased offloading mechanical features are incorporated within treatments, including customized insoles, rocker-bottom soles, controlled ankle motion, and higher cast walls. However, in clinical practice these gold standard knee-high offloading devices have low rates of prescription by clinicians and low rates of acceptance or adherence by patients. The common barriers resulting in this low use seem to surround historical misperceptions that are mostly dispelled by contemporary evidence. Further, research is now urgently required to close the implementation gap between the high-quality of supporting evidence and the low use of knee-high devices in clinical practice to reduce the high global disease burden of DFU in future.