2020
DOI: 10.48550/arxiv.2004.02389
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Shrinkage priors on complex-valued circular-symmetric autoregressive processes

Abstract: We investigate shrinkage priors on power spectral densities for complex-valued circular-symmetric autoregressive processes. We construct shrinkage predictive power spectral densities, which asymptotically dominate (i) the Bayesian predictive power spectral density based on the Jeffreys prior and (ii) the estimative power spectral density with the maximal likelihood estimator, where the Kullback-Leibler divergence from the true power spectral density to a predictive power spectral density is adopted as a risk. … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 24 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?