<p style='text-indent:20px;'>Let <inline-formula><tex-math id="M1">\begin{document}$ \mathscr{M} $\end{document}</tex-math></inline-formula> be a geometrically finite hyperbolic manifold. We present a very general theorem on the shrinking target problem for the geodesic flow, using its exponential mixing. This includes a strengthening of Sullivan's logarithm law for the excursion rate of the geodesic flow. More generally, we prove logarithm laws for the first hitting time for shrinking cusp neighborhoods, shrinking tubular neighborhoods of a closed geodesic, and shrinking metric balls, as well as give quantitative estimates for the time a generic geodesic spends in such shrinking targets.</p>