2019
DOI: 10.1007/s11868-019-00288-0
|View full text |Cite
|
Sign up to set email alerts
|

Shubin type Fourier integral operators and evolution equations

Abstract: We study the Cauchy problem for an evolution equation of Schrödinger type. The Hamiltonian is the Weyl quantization of a real homogeneous quadratic form with a pseudodifferential perturbation of negative order from Shubin's class. We prove that the propagator is a Fourier integral operator of Shubin type of order zero. Using results for such operators and corresponding Lagrangian distributions, we study the propagator and the solution, and derive phase space estimates for them.2010 Mathematics Subject Classifi… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 23 publications
(49 reference statements)
0
0
0
Order By: Relevance