When designing nano-Si electrodes for lithium-ion batteries, the detrimental effect of the c-LiSi phase formed upon full lithiation is often a concern. In this study, Si nanoparticles with controlled particle sizes and morphology were synthesized, and parasitic reactions of the metastable c-LiSi phase with the nonaqueous electrolyte was investigated. The use of smaller Si nanoparticles (∼60 nm) and the addition of fluoroethylene carbonate additive played decisive roles in the parasitic reactions such that the c-LiSi phase could disappear at the end of lithiation. This suppression of c-LiSi improved the cycle life of the nano-Si electrodes but with a little loss of specific capacity. In addition, the characteristic c-LiSi peak in the differential capacity (dQ/dV) plots can be used as an early-stage indicator of cell capacity fade during cycling. Our findings can contribute to the design guidelines of Si electrodes and allow us to quantify another factor to the performance of the Si electrodes.