Siderite, the iron carbonate mineral, occurs in several geological environments and contributes to both the global iron and CO2 cycles. Under crustal conditions, this mineral may dissolve, releasing iron that becomes oxidized and then precipitates in the form of iron oxides and oxyhydroxides that have a high affinity for pollutants, such as arsenic. The process of siderite dissolution, dissolved iron oxidation, and oxyhydroxide precipitation is coupled in time and space. Here, we study the entire process using time-lapse in-situ atomic force microscopy. Natural siderite crystals were dissolved at room temperature in acidic aqueous solutions in the presence or absence of arsenic. The dissolution process, whose rate could be measured at a nanometer scale, occurred by the nucleation and growth of etch pits, the retreat of step edges, and the deepening of cleavage steps. Precipitation of iron oxyhydroxide phases coupled to siderite dissolution was imaged in-situ. Nucleated particles have an initial height of 1-2 nm after Highlights-Siderite dissolution is coupled to iron oxyhydroxides precipitation in acidic conditions-Siderite dissolution occurs by etch pits propagation, step retreat, and cleavage plane widening-Arsenic is adsorbed by the precipitated iron oxyhydroxides