A new generation of scalable single cell whole genome sequencing (scWGS) methods [Zahn et al., 2017, Laks et al., 2019, allows unprecedented high resolution measurement of the evolutionary dynamics of cancer cells populations. Phylogenetic reconstruction is central to identifying sub-populations and distinguishing mutational processes. The ability to sequence tens of thousands of single genomes at high resolution per experiment [Laks et al., 2019] is challenging the assumptions and scalability of existing phylogenetic tree building methods and calls for tailored phylogenetic models and scalable inference algorithms. We propose a phylogenetic model and associated Bayesian inference procedure which exploits the specifics of scWGS data. A first highlight of our approach is a novel phylogenetic encoding of copy-number data providing an attractive statistical-computational trade-off by simplifying the site dependencies induced by rearrangements while still forming a sound foundation to phylogenetic inference. A second highlight is an innovative phylogenetic tree exploration move which makes the cost of MCMC iterations bounded by O(|C| + |L|), where |C| is the number of cells and |L| is the number of loci. In contrast, existing off-the-shelf likelihood-based methods incur iteration cost of O(|C| |L|). Moreover, the novel move considers an exponential number of neighbouring trees whereas offthe-shelf moves consider a polynomial size set of neighbours. The third highlight is a novel * Equal contribution 1 mutation calling method that incorporates the copy-number data and the underlying phylogenetic tree to overcome the missing data issue. This framework allows us to realistically consider routine Bayesian phylogenetic inference at the scale of scWGS data.