Dysregulation of cyclin-dependent kinase 5 (cdk5) per relative concentrations of its activators p35 and p25 is implicated in neurodegenerative diseases. P35 has a short t ½ and undergoes rapid proteasomal degradation in its membrane-bound myristoylated form. P35 is converted by calpain to p25, which, along with an extended t ½ , promotes aberrant activation of cdk5 and causes abnormal hyperphosphorylation of tau, thus leading to the formation of neurofibrillary tangles. The sigma-1 receptor (Sig-1R) is an endoplasmic reticulum chaperone that is implicated in neuronal survival. However, the specific role of the Sig-1R in neurodegeneration is unclear. Here we found that Sig-1Rs regulate proper tau phosphorylation and axon extension by promoting p35 turnover through the receptor's interaction with myristic acid. In Sig-1R-KO neurons, a greater accumulation of p35 is seen, which results from neither elevated transcription of p35 nor disrupted calpain activity, but rather to the slower degradation of p35. In contrast, Sig-1R overexpression causes a decrease of p35. Sig-1R-KO neurons exhibit shorter axons with lower densities. Myristic acid is found here to bind Sig-1R as an agonist that causes the dissociation of Sig-1R from its cognate partner binding immunoglobulin protein. Remarkably, treatment of Sig-1R-KO neurons with exogenous myristic acid mitigates p35 accumulation, diminishes tau phosphorylation, and restores axon elongation. Our results define the involvement of Sig-1Rs in neurodegeneration and provide a mechanistic explanation that Sig-1Rs help maintain proper tau phosphorylation by potentially carrying and providing myristic acid to p35 for enhanced p35 degradation to circumvent the formation of overreactive cdk5/p25.A xons are structurally and functionally distinct protrusions of neurons that modulate neurotransmitter release and neural function. Malfunction of axonal maintenance, regeneration, and target recognition contribute to CNS disorders such as Alzheimer's disease (AD), Parkinson's disease, stroke, and spinal cord injuries (1-3). Cyclin-dependent kinase (Cdk) 5 activities within the axon play a significant role in the cytoskeletal dynamics of microtubules and actin neurofilaments (NFs), which determine axonal path and length. Specifically, cdk5 active complexes phosphorylate proteins that contribute to the stabilization or destabilization of microtubules, formation of neurofibrillary tangles, and axonal pathfinding (4-6).Cdk5 is a ubiquitously expressed enzyme; however, its activator, p35, is almost exclusively expressed in neurons (7,8). Cdk5 signaling supports neurite projection and proper neuronal migration (9-11). Dysregulation of cdk5 activity leads to hyperphosphorylation of several substrates, including NF proteins and tau, which causes the formation of neurofibrillary tangles (6, 12). Although the kinetics of cdk5 activity when in complex with p35 or p25 are the same, cdk5/p25 complexes are proposed to be responsible for neurodegenerative pathophysiology because of their longer duration o...