Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The need for the development of specific and robust methodologies to elucidate the intricate pathological mechanisms of neurodegenerative diseases and discover effective treatments for prevention and remediation is evident. Alzheimer's disease, in particular, has become more prevalent as the global population has aged. β-Secretase, the β-site amyloid precursor protein cleaving enzyme (BACE1), is the protease that produces the β-amyloid peptide, which is considered one of the driving factors of Alzheimer's disease and an important target for treatment development. However, an understanding of its activity, modulation, and regulation is far from complete. This is in large part due to the complex nature of following its activity. Beyond the common requirements for all biosensors (ease of preparation and use), BACE1 probes also demand both stability at acidic pH and membrane localization. To overcome these hurdles, we exploit the modular self-assembly provided by fluorescent quantum dot (QD) sensors. As compared to other fluorophores, QDs provide enhanced fluorescence brightness and photostability, and their large surface area enables functionalization with peptide substrates together with targeting elements that localize the sensor to the areas of maximal BACE1 activity, all achieved through His-tag selfassembly. In vitro, the sensor demonstrated stability under acidic conditions, and using high-throughput plate reader assays, we determined BACE1 activity in-line with literature values and enabled the obtainment of the inhibitor constant of verubecestat, a small molecule inhibitor. The sensor was also transitioned to cellular experiments, where it demonstrated sensitivity to BACE1 activity and its modulation upon inhibitor treatment in a neuroblastoma cell line.
The need for the development of specific and robust methodologies to elucidate the intricate pathological mechanisms of neurodegenerative diseases and discover effective treatments for prevention and remediation is evident. Alzheimer's disease, in particular, has become more prevalent as the global population has aged. β-Secretase, the β-site amyloid precursor protein cleaving enzyme (BACE1), is the protease that produces the β-amyloid peptide, which is considered one of the driving factors of Alzheimer's disease and an important target for treatment development. However, an understanding of its activity, modulation, and regulation is far from complete. This is in large part due to the complex nature of following its activity. Beyond the common requirements for all biosensors (ease of preparation and use), BACE1 probes also demand both stability at acidic pH and membrane localization. To overcome these hurdles, we exploit the modular self-assembly provided by fluorescent quantum dot (QD) sensors. As compared to other fluorophores, QDs provide enhanced fluorescence brightness and photostability, and their large surface area enables functionalization with peptide substrates together with targeting elements that localize the sensor to the areas of maximal BACE1 activity, all achieved through His-tag selfassembly. In vitro, the sensor demonstrated stability under acidic conditions, and using high-throughput plate reader assays, we determined BACE1 activity in-line with literature values and enabled the obtainment of the inhibitor constant of verubecestat, a small molecule inhibitor. The sensor was also transitioned to cellular experiments, where it demonstrated sensitivity to BACE1 activity and its modulation upon inhibitor treatment in a neuroblastoma cell line.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.