2021
DOI: 10.1088/1742-6596/2094/2/022057
|View full text |Cite
|
Sign up to set email alerts
|

Signal processing of nonlinear dynamic systems

Abstract: The paper considers Hermite polynomials that act as a self-similar basis for the decomposition of functions in phase space. It is shown that the equations of behavior of nonlinear dynamical systems are simplified. It is also noted that the wavelet decomposition over Hermite polynomials reduces the number of approximation coefficients and improves the quality of approximation.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 3 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?