Satellite precipitation estimate (SPE) dedicated to reservoir inflow forecasting is very attractive as it can provide near-real-time information for reservoir monitoring. However, the potential of SPE retrievals with fine temporal resolution in supporting the high-quality pluvial flood inflow forecast and robust short-term operation of a reservoir remains unclear. In this study, the hydrological applicability of half-hourly Integrated Multisatellite Retrievals for Global Precipitation Measurement (GPM IMERG) heavy rainfall data was explored using a synthetic experiment of flood inflow forecast at sub-daily to daily lead times and resultant reservoir short-term operation. The event-based flood forecast was implemented via the rainfall–runoff model GR4H driven by the forecasted IMERG. Then, inflow forecast-informed reservoir multi-objective optimal operation was conducted via a numerical reservoir system and assessed by the risk-based robustness indices encompassing reliability, resilience, vulnerability for water supply, and flood risk ratio for flood prevention. Selecting the Wan’an reservoir located in eastern China as the test case, the results show that the flood forecast forced with IMERG exhibits slightly lower accuracy than that driven by the gauge rainfall across varying lead times. For a specific robustness index, its trends between IMERG and gauge rainfall inputs are comparable, while its magnitude depends on varying lead times and scale ratios (i.e., the reservoir scale). The pattern that the forecast errors in IMERG increase with the lead time is changed in the resultant inflow forecast series and dynamics in the robustness indices for the optimal operation decision. This indicates that the flood forecast model coupled with reservoir operation system could partly compensate the original SPE errors. Our study highlights the acceptable hydrological applicability of IMERG rainfall towards reservoir inflow forecast for robust operation, despite the intrinsic error in SPE.