Abstract:We propose a novel approach for visual representation learning called Signature-Graph Neural Networks (SGN). SGN learns latent global structures that augment the feature representation of Convolutional Neural Networks (CNN). SGN constructs unique undirected graphs for each image based on the CNN feature maps. The feature maps are partitioned into a set of equal and non-overlapping patches. The graph nodes are located on high-contrast sharp convolution features with the local maxima or minima in these patches. … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.