In this article, a novel approach to schizophrenia classification using magnetic resonance images (MRI) is proposed. The presented method is based on dissimilarity-based classification techniques applied to morphological MRIs and diffusion-weighted images (DWI). Instead of working with features directly, pairwise dissimilar-ities between expert delineated regions of interest (ROIs) are considered as representations based on which learning and classification can be performed. Experiments are carried out on a set of 59 patients and 55 controls and several pairwise dissimilarity measurements are analyzed. We demonstrate that significant improvements can be obtained when combining over different ROIs and different dissimilar-ity measures. We show that combining ROIs using the dissimilarity-based representation, we achieve higher accuracies. The dissimilar-ity-based representation outperforms the feature-based representation in all cases. Best results are obtained by combining the two modalities. In summary, our contribution is threefold: (i) We introduce the usage of dissimilarity-based classification to schizophrenia detection and show that dissimilarity-based classification achieves better results than normal features, (ii) We use dissimilarity combination to achieve better accuracies when carefully selected ROIs and dissimi-larity measures are considered, and (iii) We show that by combining multiple modalities we can achieve even better results. V