Introduction
IVF is a widely-used assisted reproductive technology with a consistent success rate of around 30%, and improving this rate is crucial due to emotional, financial, and health-related implications for infertile couples. This study aimed to develop a model for predicting IVF outcome by comparing five machine-learning techniques.
Method
The research approached five prominent machine learning algorithms, including Random Forest, Artificial Neural Network (ANN), Support Vector Machine (SVM), Recursive Partitioning and Regression Trees (RPART), and AdaBoost, in the context of IVF success prediction. The study also incorporated GA as a feature selection method to enhance the predictive models’ robustness.
Results
Findings demonstrate that AdaBoost, particularly when combined with GA feature selection, achieved the highest accuracy rate of 89.8%. Using GA, Random Forest also demonstrated strong performance, achieving an accuracy rate of 87.4%. Genetic Algorithm significantly improved the performance of all classifiers, emphasizing the importance of feature selection. Ten crucial features, including female age, AMH, endometrial thickness, sperm count, and various indicators of oocyte and embryo quality, were identified as key determinants of IVF success.
Conclusion
These findings underscore the potential of machine learning and feature selection techniques to assist IVF clinicians in providing more accurate predictions, enabling tailored treatment plans for each patient. Future research and validation can further enhance the practicality and reliability of these predictive models in clinical IVF practice.