Background:
Bladder cancer (BLCA) is a prevalent and aggressive cancer associated with high mortality and poor prognosis. Currently, studies on the role of disulfidptosis-related long non-coding RNAs (DRLs) in BLCA are limited. This study aims to construct a prognostic model based on DRLs to improve the accuracy of survival predictions for patients and identify novel targets for therapeutic intervention in BLCA management.
Methods:
Transcriptomic and clinical datasets for patients with BLCA were obtained from The Cancer Genome Atlas. Using multivariate Cox regression and least absolute shrinkage and selection operator techniques, a risk prognostic signature defined by DRLs was developed. The model’s accuracy and prognostic relevance were assessed through Kaplan–Meier survival plots, receiver operating characteristic curves, concordance index, and principal component analysis. Functional and pathway enrichment analyses, including Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Gene Set Enrichment Analysis, were conducted to elucidate the underlying biological processes. Immune cell infiltration was quantified using the CIBERSORT algorithm. Differences and functions of immune cells in different risk groups were evaluated through single-sample Gene Set Enrichment Analysis. The Tumor Immune Dysfunction and Exclusion predictor and tumor mutational burden (TMB) assessments were utilized to gauge the likelihood of response to immunotherapy. Drug sensitivity predictions were made using the Genomics of Drug Sensitivity in Cancer database.
Results:
A robust 8-DRL risk prognostic model, comprising LINC00513, SMARCA5-AS1, MIR4435-2HG, MIR4713HG, AL122035.1, AL359762.3, AC006160.1, and AL590428.1, was identified as an independent prognostic indicator. This model demonstrated strong predictive power for overall survival in patients with BLCA, revealing significant disparities between high- and low-risk groups regarding tumor microenvironment, immune infiltration, immune functions, TMB, Tumor Immune Dysfunction and Exclusion scores, and drug susceptibility.
Conclusion:
This study introduces an innovative prognostic signature of 8 DRLs, offering a valuable prognostic tool and potential therapeutic targets for bladder carcinoma. The findings have significant implications for TMB, the immune landscape, and patient responsiveness to immunotherapy and targeted treatments.