The low permeabilities of unconventional reservoirs such as the Montney Formation require hydraulic fracturing to enhance fluid flow and achieve economic production of hydrocarbons. Efficient hydraulic fracturing operations rely on properly characterizing the controlling factors responsible for fracture complexity, fracture conductivity, and fracture dimensions. Since direct observation of fractures in the subsurface are very challenging, technologies have been developed to help characterize fractures in laboratories. However, the scale of these tools is insufficient to capture the fine detail needed to observe how these hydraulic fractures are interacting with the rock fabric, stress state, or fluid viscosity. Presented here is a laboratory experiment designed to evaluate the effects of rock fabric, stress anisotropies, and fluid viscosities using large boulders of Sulfur Mountain Formation (Montney Formation equivalent). These experiments were designed to simulate subsurface conditions and provide an opportunity to directly examine a scaled fracture face.
Four large boulders were collected from outcrop and trimmed to fit inside a large stress frame. A borehole was drilled to facilitate the injection of fluids and generate scaled hydraulic fractures. Experiments tested the effects of different stress states, fluid viscosities, and rock fabric on the growth and geometry of hydraulic fractures. Of these factors, the fabric of the rock was the dominant factor controlling hydraulic fracture growth. In all stress regimes, hydraulic fractures were arrested, deflected, or bridged by pre-existing cemented and open natural fractures. Fluid viscosity had a minor effect on fracture complexity, but no discernable difference could be observed between any of the tested stress regimes.
Subsurface core data provided additional data to support the laboratory experiments. Hardness measurements showed that finely laminated facies have variable hardness at the lamination scale. Darker laminations with more clay are softer than the more silt-rich light-coloured laminations. The result of this can be observed in both core and outcrop as natural fractures in these facies often display highly irregular geometries. In addition, fracture filling cement was significantly softer than the surrounding rock. The collective result of both core and laboratory data provides valuable insight into the role of rock fabric in the development of hydraulic fractures in the Montney Formation and that is not obtainable from traditional data collection methods.
Résumé
La faible perméabilité des réservoirs non conventionnels, tels que la Formation de Montney, nécessite la fracturation hydraulique pour améliorer l’écoulement des fluides et réaliser une production d’hydrocarbures rentables. Pour réaliser des opérations de fracturation efficientes, on doit caractériser proprement les facteurs qui régissent la complexité, la conductivité et la dimension des fractures. Puisque l’observation directe des fractures dans la subsurface reste un défi, des technologies ont été mises au point pour mieux caractériser les fractures en laboratoire. Toutefois, l’étendue de ces outils se révèle insuffisante pour saisir les fins détails nécessaires à l’observation de ces fractures hydrauliques qui interagissent avec la fabrique des roches, l’état de contrainte ou la viscosité des fluides. Le présent document expose une expérience en laboratoire conçue pour évaluer les effets de la fabrique des roches, des anisotropies de contrainte et des viscosités de fluides au moyen de gros blocs rocheux extraits de la Formation de mont Sulphur (équivalente à la Formation de Montney). Ces expériences permettent de simuler les conditions en subsurface et d’examiner directement un plan à l’échelle des fractures.
Quatre gros blocs rocheux ont été extraits d’un affleurement puis taillés afin de les disposer dans un grand cadre de contrainte. Puis, un trou de sondage a été foré pour faciliter l’injection de fluides et générer des fractures hydrauliques à l’échelle. L’expérience visait à constater les effets de différents états de contrainte, de différentes viscosités des fluides et fabrique des roches sur la croissance et la géométrie des fractures hydrauliques. Entre tous ces facteurs, la fabrique de la roche était le facteur prédominant régissant la croissance des fractures hydrauliques. Dans tous les régimes de contrainte, les fractures hydrauliques ont été arrêtées, déviées ou pontées par des fractures cimentées préexistantes naturelles et ouvertes. La viscosité des fluides avaient eu un effet mineur sur la complexité des fractures, mais aucune différence discernable n’a pu être observée entre tous les régimes de contrainte testés.
Les carottes de sondage de la subsurface ont apporté des données additionnelles pour appuyer les expériences en laboratoire. Le duromètre montrait que les faciès finement laminés présentaient une dureté variable à l’échelle de lamination. Les laminations plus foncées avec plus d’argile se révélaient plus molles que celles plus claires, riches en silt. Nous pouvons observer les résultats de ce qui précède dans les carottes de sondage et les affleurements puisque les fractures naturelles de ces faciès affichent souvent des géométrie fortement irrégulières. De plus, le ciment de remplissage des fractures était notablement plus mou que la roche adjacente. Les résultats collectifs des carottes de sondage et du laboratoire nous fournissent un aperçu précieux dans le rôle de la fabrique des roches dans l’évolution des fractures hydrauliques de la Formation de Montney, que l’on ne pourrait obtenir autrement par des méthodes de collecte de données traditionnelles.
Michel Ory