A growing body of evidence shows that olfactory information is processed within a thalamic nucleus in both rodents and humans. The mediodorsal thalamic nucleus (MDT) receives projections from olfactory cortical areas including the piriform cortex (PCX) and is interconnected with the orbitofrontal cortex (OFC). Using electrophysiology in freely moving rats, we recently demonstrated the representation of olfactory information in the MDT and the dynamics of functional connectivity between the PCX, MDT and OFC. Notably, PCX-MDT coupling is specifically increased during odor sampling of an odor discrimination task. However, whether this increase of coupling is functionally relevant is unknown. To decipher the importance of PCX-MDT coupling during the sampling period, we used optogenetics to specifically inactivate the PCX inputs to MDT during an odor discrimination task and its reversal in rats. We demonstrate that inactivating the PCX inputs to MDT does not affect the performance accuracy of an odor discrimination task and its reversal, however it does impact the rats' sampling duration. Indeed, rats in which PCX inputs to MDT were inactivated during the sampling period display longer sampling duration during the odor reversal learning compared to controls-an effect not observed when inactivating OFC inputs to MDT. We demonstrate a causal link between the PCX inputs to MDT and the odor sampling performance, highlighting the importance of this specific corticothalamic pathway in olfaction.