Existing statistical methods extract insufficient information from 3-dimensional gait data, rendering clinical interpretation of impaired movement patterns sub-optimal. We propose an alternative approach based on functional data analysis that may be worthy of exploration. We apply this to gait data analysis using repeated-measurements data from children with cerebral palsy who had been prescribed fixed ankle-foot orthoses as an example. We analyze entire gait curves by means of a new functional F test with comparison to multiple pointwise F tests and also to the traditional method - univariate repeated-measurements analysis of variance of joint angle minima and maxima. The new test maintains the nominal significance level and can be adapted to test hypotheses for specific phases of the gait cycle. The main findings indicate that ankle-foot orthoses exert significant effects on coronal and sagittal plane ankle rotation; and both sagittal and horizontal plane foot rotation. The functional F test provided further information for the stance and swing phases. Differences between the results of the different statistical approaches are discussed, concluding that the novel method has potential utility and is worthy of validation through larger scale patient and clinician engagement to determine whether it is preferable to the traditional approach.