Introduction: Aberrant Wnt signalling, regulating cell development and stemness, is observed in many cancer entities. Aryl hydrocarbon receptor (AhR) mediates tumorigenesis of environmental pollutants. Complex interaction patterns of genes assigned to AhR/Wnt-signalling were recently associated to lung cancer susceptibility. Aim: To assess the association and predictive ability of AhR/Wnt-genes with lung cancer in cases and controls of European descent. Methods: Odds ratios (OR) were estimated for genomic variants assigned to the genes DKK2, DKK3, DKK4, FRZB, SFRP4 and Axin2 and other lung cancer-related genes. Logistic regression models with variable selection were trained, validated and tested to predict lung cancer. Further, decision trees were created to investigate variant x variant interaction. All analyses were performed for overall lung cancer and for subgroups. Results: No association with overall lung cancer was observed, but within the subgroups of ever smokers (e.g. maker rs2722278 SFRP4; OR=1.20; 95%-CI: 1.13-1.27; p=5.6 10-10) and never smokers. Although predictability is poor, AhR/Wnt-variants are unexpected overrepresented in optimized prediction scores for overall lung cancer and for small cell lung cancer. Remarkable, the score for never-smokers contained solely two AhR/Wnt-variants. The optimal decision tree for never smokers consists of 7 AhR/Wnt-variants and only two lung cancer variants, no assigned to any CHRN gene. Conclusions: The role of variants belonging to Wnt/AhR-pathways in lung cancer susceptibility may be underrated in main-effects association analysis. Complex interaction patterns in individuals of European descent have moderate predictive capacity for lung cancer or subgroups thereof, especially in never smokers.