The α-chain is a specific component of FcεRI, which is essential for the cell surface expression of FcεRI and the binding of IgE. Recently, two single nucleotide polymorphisms (SNPs) in the α-chain promoter, −315C>T and −66T>C, have been shown by statistic studies to associate with allergic diseases. The effect of −66 SNP on GATA-1-mediated promoter activity has been already indicated. In the present study, to investigate roles of the −315 SNP on the α-chain promoter functions, the transcription activity was evaluated by reporter assay. The α-chain promoter carrying −315T (minor allele) possessed significantly higher transcriptional activity than that of −315C (major allele). EMSA indicated that the transcription factor Sp1, but not Myc-associated zinc finger protein (MAZ), was bound to the −315C allele probe and that a transcription factor belonging to a high mobility group-family bound to the −315T allele probe. The chromatin immunoprecipitation assay suggested that high mobility group 1, 2, and Sp1 bound around −315 of FcεRIα genomic DNA in vivo in the human basophil cell line KU812 with −315C/T and in human peripheral blood basophils with −315C/C, respectively. When cell surface expression level of FcεRI on basophils was analyzed by flow cytometry, basophils from individuals carrying −315T allele expressed significantly higher amount of FcεRI compared with those of −315C/C. The findings demonstrate that a −315 SNP significantly affects human FcεRI α-chain promoter activity and expression level of FcεRI on basophils by binding different transcription factors to the SNP site.