Background: Intervertebral disc degeneration is a pathological process that involves an inflammation response. As a classical cellular feature, several studies have demonstrated that inflammation can promote nucleus pulposus (NP) cell apoptosis. Therefore, attenuation of NP cell apoptosis may be a potential way to retard disc degeneration.Objective: The present study was aimed to investigate the protective effects of osteogenic protein-1 (OP-1) against NP cell apoptosis in an inflammation environment, and the potential signaling transduction pathway.Methods: Rat NP cells were cultured in medium with or without inflammatory cytokine tumor necrosis factor (TNF)-α for 6 days. The exogenous TNF-α was added into the medium to investigate its protective effects. NP cell apoptosis was evaluated by cell apoptosis ratio, caspase-3 activity, gene/protein expression of apoptosis-related molecules (Bcl-2, Bax, and caspase-3). Additionally, the intracellular reactive oxygen species (ROS) content and activity of the NF-κB pathway were also analyzed.Results: Compared with the control NP cells, TNF-α significantly increased cell apoptosis ratio, caspase-3 activity, gene/protein expression of Bcl-2, Bax and caspase-3, ROS content, and activity of the NF-κB pathway. However, OP-1 partly attenuated these effects in NP cells treated with TNF-α.Conclusion: OP-1 is effective in attenuating TNF-α-caused NP cell apoptosis, and the ROS/NF-κB pathway may be the potential signaling transduction pathway. The present study indicates that OP-1 may be helpful to inhibit inflammation-mediated disc degeneration.