Abstract:Although mixing tree species is considered an efficient risk-reduction strategy in the face of climate change, the conditions where mixtures are more productive than monocultures are under ongoing debate. Generalizations have been difficult because of the variety of methods used and due to contradictory findings regarding the effects of the species investigated, mixing proportions, and many site and stand conditions. Using data from 960 plots of the Swiss National Forest Inventory data, we assessed whether Picea abies (L.) Karst-Fagus sylvatica L. mixed stands are more productive than pure stands, and whether the mixing effect depends on site-or stand-characteristics. The species proportions were estimated using species proportion by area, which depends on the maximum stand basal area of an unmanaged stand (BA max ). Four different alternatives were used to estimate BA max and to investigate the effect of these differing alternatives on the estimated mixture effect. On average, the mixture had a negative effect on the growth of Picea abies. However, this effect decreased as moisture availability increased. Fagus sylvatica grew better in mixtures and this effect increased with site quality. A significant interaction between species proportions and quadratic mean diameter, a proxy for stand age, was found for both species: the older the stand, the better the growth of Fagus sylvatica and the lower the growth of Picea abies. Overyielding was predicted for 80% of the investigated sites. The alternative to estimate BA max weakly modulated the estimated mixture effect, but it did not affect the way mixing effects changed with site characteristics.