Background: Postictal hypoxia (PIH) is a stroke-like event that follows seizures and may be responsible for the postictal state. PIH may also be a contributing factor to the development of seizure-induced brain abnormalities and behavioral dysfunction associated with epilepsy. Caffeine is the world's most popular drug with ~85% of people in the US consuming it daily. Thus, persons with epilepsy are likely to have caffeine in their system during seizures. This preclinical study investigated the acute and chronic effects of caffeine on tissue oxygenation pre and post seizure. Methods: We utilized the electrical kindling model in rats. A stimulating/recording electrode was placed into the rat ventral hippocampus (CA3), and an oxygen measuring optrode in dorsal hippocampus (CA1). Rats were administered vehicle (saline) or caffeine (5.0, 10.0, or 15.0 mg/kg) intraperitoneally, 30 minutes prior to an elicited seizure. Hippocampal oxygen levels were continually measured post-injection, and post-seizure, until returning to the normoxic range. Further, rats were administered various agonists and antagonists to determine adenosine receptors role in PIH. Lastly, rats were administered a chronic regime of caffeine to determine the long-term effects of caffeine in relation to PIH. Results: Caffeine at high (15. 0mg/kg) doses, caused a significant drop in pre-seizure hippocampal pO2. Following a seizure, caffeine at 10.0mg/kg and 15.0mg/kg, increased the time below the severe hypoxic threshold (10mmHg). Caffeine's metabolites, paraxanthine, theobromine, and theophylline also increased the time below the severe hypoxic threshold. Adenosine A1 receptor agonist n6-Cyclopentyladenosine caused a significant drop in pre-seizure mean pO2 and increased the area below severe hypoxic threshold. A2A receptor antagonist SCH-Table of Contents