The first stable eta6-germabenzene complexes, that is, [M(CO)3(eta6-C5H5GeTbt)] {M=Cr (2), Mo (3), and W (4); Tbt=2,4,6-tris[bis(trimethylsilyl)methyl]phenyl}, have been synthesized by ligand-exchange reactions between [M(CO)3(CH3CN)3] (M=Cr, Mo, and W) and the kinetically stabilized germabenzene 1 and characterized by 1H and 13C NMR, IR, and UV/Vis spectroscopy. In the 1H and 13C NMR spectra of 2-4, all of the signals for the germabenzene rings were shifted upfield relative to their counterparts in the free germabenzene 1. X-ray crystallographic analysis of 2 and 4 revealed that the germabenzene ligand was nearly planar and was coordinated to the M(CO)3 group (M=Cr, W) in an eta6 fashion. The formation of complexes 2-4 from germabenzene 1 should be noted as the application of germaaromatics as 6pi-electron ligands toward complexation with Group 6 metals. On the other hand, treatment of 1 with [{RuCp*Cl}4] (Cp*=C5Me5) in THF afforded a novel eta5-germacyclohexadienido complex of ruthenium-[RuCp*{eta5-C5H5GeTbt(Cl)}] (9)-instead of the expected eta6-germabenzene-ruthenium cationic complex [RuCp*{eta6-C5H5GeTbt}]Cl (10). Crystallographic structural analysis of 9 showed that the five carbon atoms of the germacyclohexadienido ligand of 9 were coordinated to the Ru center in an eta5 fashion.