Background/Aims: The atherosclerotic apolipoprotein E-deficient (apoE-/-) mouse exhibits impaired vasodilation and enhanced vasoconstriction responsiveness. The objectives of this study were: a) to determine the relative contribution of cyclooxygenases (Cox-1 and Cox-2), thromboxane A2 (TXA2) and endothelin-1 (ET-1) to enhancing vascular hyperresponsiveness in this model of atherosclerosis and b) to investigate the beneficial effects of the phosphodiesterase 5 inhibitor sildenafil on this endothelial dysfunction. Methods: Adult male apoE-/- mice were treated with sildenafil (40 mg/kg/day, for 3 weeks) and compared with non-treated ApoE-/- and wild-type mice. The beneficial effects of sildenafil on vascular contractile response to phenylephrine (PE) in aortic rings were evaluated before and after incubation with Cox-1 (SC-560) or Cox-2 (NS-398) inhibitors or the TP antagonist SQ-29548, and on contractile responsiveness to ET-1. Results: ApoE-/- mice exhibited enhanced vasoconstriction to PE (Rmax ∼35%, p<0.01), which was prevented by treatment with sildenafil. The enhanced PE-induced contractions were abolished by both Cox-1 inhibition and TP antagonist, but were not modified by Cox-2 inhibition. Aortic rings from ApoE-/- mice also exhibited enhanced contractions to ET-1 (Rmax ∼30%, p<0.01), which were attenuated in sildenafil-treated ApoE-/- mice. In addition, we observed augmented levels of vascular proinflammatory cytokines in ApoE-/- mice, which were partially corrected by treatment with sildenafil (IL-6, IL-10/IL-6 ratio and MCP-1). Conclusion: The present data show that the Cox-1/TXA2 pathway prevails over the Cox-2 isoform in the mediation of vascular hypercontractility observed in apoE-/-mice. The results also show a beneficial effect of sildenafil on this endothelial dysfunction and on the proinflammatory cytokines in atherosclerotic animals, opening new perspectives for the treatment of other endothelium-related cardiovascular abnormalities.