In continuation and development of our previous works where nuclear reactions of moderate energy (10 -400 MeV) protons with Si, Al and W have been investigated, the results of reactions with Cu are reported in this paper. Cu is a most important component in composition of materials in contact pads and pathways of modern and perspective ultra large-scale integration circuitry, especially in 3D topology.It is impossible to imagine a modern spacecraft without electronic integrated schemes with connecting and contact paths and areas, inter-layer conducting connections, and other metallic components. Such interior components normally have a high concentration of Al, Fe, Ni, Cu, Mo, Ta, W, Pt, Au, and other chemical elements.The kinematical effect of the energy transfer in a head-on collision from incident proton to a target nucleus is weaker for heavier target nucleus, but the resulting recoil energy can be sufficient to cause a dangerous upset of the electronics in the case of a high energy of incident proton. For example, 1 GeV proton encountering a head-on collision with a gold nucleus loses only about 2% of its energy but transfers an energy of about 20 MeV to the target gold nucleus. Head-on collisions are quite rare, elastic collisions occur predominantly at nonzero impact parameters, with the result that the kinetic energies of recoil nuclei form a spectrum associated with a specific angular distribution of recoil nuclei [1,2].