Airborne crystalline silica (SiO2) particles are one of the most common pollutants in stone industries. Limited studies have investigated the health effects of crystalline SiO2 nanoparticles. Hence, the objective of this study was to study the cytotoxicity of SiO2 in nano and micron sizes. A mineral quartz sample in the range of 0.2–0.8 mm sizes was purchased. These particles were ground at about 5 and 0.1 microns. Human cell line A549 was exposed to micro and nanometer particles at concentrations of 10, 50, 100, and 250 μg/ml for 24 and 72 h. Subsequently, the cytotoxicity of exposed cells was investigated by measuring cell survival, ROS generation, mitochondrial permeability, and intracellular glutathione content. The results showed that crystalline SiO2 nano and microparticles decreased cell survival, increased ROS generation, damaged the mitochondrial membrane, and lowered the antioxidant content of these cells in a concentration- and time-dependent manner. The toxicity of crystalline SiO2 microparticles at concentrations ≤50 μg/mL was greater than for nanoparticles, which was the opposite at concentrations ≥100 μg/mL. Exposure time and concentration were crucial factors for the cytotoxicity of exposed A549 cells to crystalline SiO2 particles, which can affect the severity of the effect of particle size. Due to the limitation of exposure concentration and test durations in this study, further studies on the parameters of nanoparticle toxicity and underlying mechanisms could advance our knowledge.