The basicity of the simplest silicone, disiloxane (H 3 SiÀ OÀ SiH 3 ), is strongly affected by the SiÀ OÀ Si angle (α). We use high-level ab initio MP2/aug'-cc-pVTZ calculations and the molecular electrostatic potential (MEP) to analyze the relationship between the increase in basicity and the reduction of α. Our results clearly point out that this increase can be explained through the MEP, as the interactions between oxygen from disiloxane and the acceptors are mostly electrostatic. Furthermore, the effect of α on the tetrel bond between disiloxane and several Lewis bases can again be rationalized using the MEP. Finally, we explore the cooperativity throughout α for ternary complexes where disiloxane simultaneously interacts with a Lewis acid and a Lewis base. Both non-covalent interactions remain cooperative for all α values, although the largest cooperativity effects are not always those maximizing the binding energy in the binary complexes. Overall, the MEP remains a powerful predictor for noncovalent interactions.