This chapter proposes the application of machine learning techniques, based on first-order logic as a representation language, to the real-world application domain of document processing. First, the tasks and problems involved in document processing are presented, along with the prototypical system DOMINUS and its architecture, whose components are aimed at facing these issues. Then, a closer look is provided for the learning component of the system, and the two sub-systems that are in charge of performing supervised and unsupervised learning as a support to the system performance. Finally, some experiments are reported that assess the quality of the learning performance. This is intended to prove to researchers and practitioners of the field that first-order logic learning can be a viable solution to tackle the domain complexity, and to solve problems such as incremental evolution of the document repository.