The hydrophilic and porous structure of cement-based concrete materials makes it vulnerable to various harmful ions dissolved in water in the environment or during the freeze–thaw cycle, resulting in a significant decline in durability. Therefore, the introduction of hydrophobic hydroxyl silicone oil with good chemical stability and excellent hydrophobic properties during the process of concrete preparation to achieve the hydrophobic modification of its internal holes has very positive significance in terms of improving its durability. In order to disperse the hydrophobic hydroxyl silicone oil evenly in the internal pores of the concrete, synthetic non-ionic polyether-modified silicone oil was used as an emulsifier to make it a water-soluble emulsion. The influences of the composition of the emulsifier on the dispersion, water contact angle, water absorption, porosity, and compressive strength of cement mortar were investigated. The results show that when the emulsion content is 0.5%, the pore volume of the cement mortar decreases by 15%, and the maximum contact angle reaches 128°, which is conducive to improving the anti-erosion and anti-freezing properties of concrete and provides a new solution for the preparation of high-durability concrete. However, the introduction of polyether-modified silicone oil increases the number of large holes in the cement mortar, and leads to an increase in water absorption and a decrease in compressive strength. It is necessary to further optimize the composition of emulsifier in future work.