TiO 2 hollow structures (HS) were synthesized by carbon sphere template removal method. Nanometer sized carbon spheres (CS) were prepared by mild hydrothermal treatment of ordinary table sugar (sucrose). The size of these spheres can be controlled by the parameters of the hydrothermal treatment (e.g. time and pH). The obtained CSs were characterized by scanning electron microscopy (SEM), Raman spectroscopy, infrared spectroscopy (IR), X-ray diffraction (XRD) and thermogravimetry (TG). CSs were successfully coated with TiO 2 via sol-gel method. The phase composition of the TiO 2 hollow spheres were controlled by the annealing temperature during crystallization and CSs template removal. TiO 2 hollow structures (HSs) were characterized by SEM, XRD, Raman spectroscopy, TG and energy-dispersive X-ray spectroscopy (EDX). Photocatalytic performance of the TiO 2 HSs was evaluated by phenol degradation in a batch-type foam reactor under low powered UV-A irradiation. The degradation reaction was followed by high-performance liquid chromatography (HPLC) and total organic carbon (TOC) measurement techniques. Photocatalytic activity test results pointed out that increased rutile content up to a certain extent (resulting mixed phase anatase-rutile TiO 2) effects advantageously the photocatalytic performance of TiO 2 HSs and the unique morphology proved to enhance the photocatalytic activity (six times) as well as TOC removal efficiency (twelve times) compared to the sample which was prepared by the same method without the CSs.