We report herein a detailed structural study by collision‐induced dissociation (CID) of nonglycosylated anthocyanins (anthocyanidins) using electrospray ionization triple quadrupole mass spectrometry (ESI‐QqQ) and isotope labeling experiments to understand the fragmentation process often used in mass spectrometry analysis of this class of compounds. Tandem mass spectrometric product ion spectra for three anthocyanidins (cyanidin, delphynidin, and pelargonin) were evaluated to propose fragmentation mechanisms to this natural colorant class of organic compounds. The proposed rearrangements, retro Diels‐Alder reaction, water loss, CO losses, and stable acylium ion formation, were evaluated based on tandem mass spectrometric experiments of normal and labeled precursor ions together to computational thermochemistry. B3LYP/6‐311 + G** ab initio calculations studies were carried out to obtain energy diagrams to show the viability of the proposed mechanisms. The CO losses fragmentation channels have lower energies when compared with water losses and the other proposed fragmentations. The isotope labeling experiments indicate the H/D exchange of the hydroxyl protons and corroborate the proposed general fragmentation mechanism for anthocyanidins.