In [Logarithmic coefficient bounds and coefficient conjectures for classes associated with convex functions, J. Funct. Spaces 2021 (2021), Art. ID 6690027], Alimohammadi et al. presented a few conjectures for the logarithmic coefficients γ
n
of the functions f belonging to some well-known classes like
C
(
1
+
α
z
)
$ \mathcal{C}(1+\alpha z) $
for α ∈ (0, 1], and
C
V
h
p
l
(
1
/
2
)
$ \mathcal{CV}_{hpl}(1/2) $
. For example, it is conjectured that if the function
f
∈
C
(
1
+
α
z
)
$ f\in\mathcal{C}(1+\alpha z) $
, then the logarithmic coefficients of f satisfy the inequalities
|
γ
n
|
≤
α
2
n
(
n
+
1
)
,
n
∈
N
.
$$ |\gamma_n|\le\dfrac{\alpha}{2n(n+1)},\quad n\in\mathbb{N}.
$$
Equality is attained for the function L
α, n
, that is,
log
L
α
,
n
(
z
)
z
=
2
∑
n
=
1
∞
γ
n
(
L
α
,
n
)
z
n
=
α
n
(
n
+
1
)
z
n
+
…
,
z
∈
U
.
$$ \log\dfrac{L_{\alpha,n}(z)}{z}=2\sum\limits_{n=1}^{\infty}{\gamma_n(L_{\alpha,n})z^n} =\frac{\alpha}{n(n+1)}z^n+\dots,\quad z\in\mathbb{U}.
$$
The aim of this paper is to confirm that these conjectures hold for the coefficient γ
n
0−1 whenever the function f has the form
f
(
z
)
=
z
+
∑
k
=
n
0
∞
a
k
z
k
$ f(z)=z+\sum\limits_{k=n_{0}}^{\infty}{a_kz^k} $
,
z
∈
U
$ z\in\mathbb{U} $
for some
n
0
∈
N
$ n_0\in\mathbb{N} $
, n
0⩾2.