Identification of coherent generators and the determination of the stability system condition in large interconnected power system is one of the key steps to carry out different control system strategies to avoid a partial or complete blackout of a power system. However, the oscillatory trends, the larger amount data available and the non-linear dynamic behaviour of the frequency measurements often mislead the appropriate knowledge of the actual coherent groups, making wide-area coherency monitoring a challenging task. This paper presents a novel online unsupervised data mining technique to identify coherent groups, to detect the power system disturbance event and determine status stability condition of the system. The innovative part of the proposed approach resides on combining traditional plain algorithms such as singular value decomposition (SVD) and Kmeans for clustering together with new concept based on clustering slopes. The proposed combination provides an added value to other applications relying on similar algorithms available in the literature. To validate the effectiveness of the proposed method, two case studies are presented, where data is extracted from the large and comprehensive initial dynamic model of ENTSO-E and the results compared to other alternative methods available in the literature.