The model of binary aggregation with constant kernel is subjected to stochastic resetting: aggregates of any size explode into monomers at independent stochastic times. These resetting times are Poisson distributed, and the rate of the process is called the resetting rate. The master equation yields a Bernoulli-type equation in the generating function of the concentration of aggregates of any size, which can be solved exactly. This resetting prescription leads to a non-equilibrium steady state for the densities of aggregates, which is a function of the size of the aggregate, rescaled by a function of the resetting rate. The steady-state density of aggregates of a given size is maximized if the resetting rate is set to the quotient of the aggregation rate by the size of the aggregate (minus one).